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INTRODUCTION

D. j, Newman, in [2], derives precise upper bounds for uniform rational
approximations to eX on [-I, 1]. He writes

eX = ez
/
2 eZ/2 '" R n •m(z/2) R n ,m(z/2),

where

x= Hz + z) and Izi = 1

and where Rn,m is the (n, m) Pade approximate to eZ
• The critical obser

vation is that the approximant R n ,m(z/2) R n •m(z/2) is a rational function of
type (n, m) in the variable x = (!)(z + z). (See also Szabados [4].) It is our
intention to further examine this approach.

Let E p ' P > 1, be the closed ellipse in the complex plane with foci at ± I
and with semiaxes Hp ± P- 1). Suppose that f is analytic and non-zero on a
neighbourhood of Ep • As in [2, p. 25], for

we have

z = x + iy and

where

f(x) = F(z) F(z),

( (Z+Z-l))log f 2 = log F(z) + log F(z).

Furthermore, we may assume that F(z) is analytic on Dp = {z: Iz I~ p}.
Let IIn denote the set of algebraic polynomials of degree at most n. We
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say that a rational function p(z )/q(z) is of type (n, m) if p E IInand q E IIm'
The normal (n, m) Pade approximant to a function g analytic in a
neighbourhood of zero is the (n, m) rational function Pn/qm if it exists, that
satisfies

where h is analytic in a neighbourhood of zero and where qm(O) =1= O.
The following theorem generalizes a well-known result of S. N. Bernstein

[1, p. 76] and reduces to his result in the polynomial case. Let II . III denote
the supremum norm on the set I.

THEOREM. Suppose that f is analytic and non-zero in a neighbourhood of
Ep • Let F be defined as above and suppose that R is the normal (n, m) Pade
approximant to F. If

then

IIF(z) - R(z)IID ~ A
p

and IIF(z)IID ~ B
p

3A(A +B)p
Ilf(x) - S(x)lll-l. ll ~ pn+m(p _ 1)2 '

where S(x) = R(z/2)R(z/2) is a rational function of type (n,m).

Proof If Iz I= 1 then

F(z) F(z) - R(z) R(z)

= F(z) F(I/z) - R(z) R(I/z)

zn+m+ I [F(z) - R(z)] F(I/z) z-ln+m+ I) [F(1/z) - R(I/z)] R(z)
= zn+m+1 + z-(n+m+l)

zn+m+1 . (FC'}-R(mF(I/()d(
= 2rri LI (n +m+ 1«( - z)

zn+m+1 J' (F«()-R«(»F(I/()d(
+ 2rri "'2 (n+m+l«( - z)

Z-(n+m+l) . (F(1/()-R(1/mR(Od(
+ 2rri L, c(n+m+ 1)«( - Z)

Z -(n + m+ I) . (F( 1/') - R(1/'» R(,) d(
+ 2rri t

2
(-In+m+1)((_z)

= I 1(z) + 12 (z) + 13(z) + J4 (z),
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where U 1 is the circle of radius p taken counter-clockwise and U z is the circle
of radius lip taken clockwise. It is easily verified from the definitions that

F(z)-R(z)
zn+m+l

is analytic on the annulus {z: lip ~ Iz I~ p} and hence, that the preceding
application of Cauchy's integral formula is valid. For Izi = I,

I, AB d~

!ll(Z)1 ~ 2n L, pn+m+l(p - I)

~ pn+::_I)'

Similarly, for Izi = I,

A(A +B)
Iliz)1 ~ pn+m+ l(p _ I)'

We now estimate lz(z) and l3(Z). First, for Iwl <p,

F(w)-R(w)= w
n
+

m
+

1 j' (F«()-R«(»d(
2ni ' a, (n + m+ 1«( - w)

and for wE U Z,

A
IF(w)-R(w)l~ Zn+2m+l(p -I)'P -p

Thus, for Izi = I,

and

Combining the above estimates yields, for Iz I= I,

3A(A +B)
IF(z)F(z)-R(z)R(z)l~ n+ 1 2P m- (P-l)

whence the result follows.
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Condition (*) of the above theorem is always satisfied in the polynomial
case. In the general case Szabados [4] shows that there exists a function f
analytic in E p so that

lim sup(R n.n(f» lin = lip.
n--+oc

where

Thus, we cannot hope to omit assumption (*) completely from the theorem.

ApPROXIMATING (x _ p) 1/2

Assume that plq is the normal (n, n) Pade approximant at the point z = 1
to the function z 1/2. Then,

p(z) - q(z)~ = (1 - Z )2n + Ih(z)

and

where h(z) is analytic on C - (-00,0]. Since p(Z2) - q(Z2)Z is a polynomial
of degree 2n + 1 with 2n + 1 roots at 1, it follows that

(1 )

where q is suitably normalized. Expanding (1) and comparing coefficients
yields

and

(z) = + (2n + 1 ) Zk
q ;:'0 2k + 1

= _1_ [(1 + ~)2n+l _ (1 _ ~)2n+ II
2~

(2)

(3 )

(That we may assume the existence of the normal (n, n) Pade approximant is
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now clear from (1), (2) and (3).) From (2) one deduces that q has only real
negative roots and that for Iz - 11 ~ 1,

j
P(Z) I 1(1-0?n+11 1
-(-) - ~ ~ (0) ~ ., 1 .q z qn _n +

If pp(z)/qp(z) is the normal (n, n) Pade approximant to (p - Z)I/2 then

Thus, by the Theorem, there exists Sn.n a rational function of type (n, n) so
that

II
(p2 + 1 - 2px) 112 II 3p2

Sn,n(x)- (2p)1/2 [_I.ll~np2n(p-l)2'

If we set a = (p2 + 1)/2p we get

li S (x)-(a-x)1/211 & ( I2a
2

). 1
n,n [-1,11"" n(a 2-1) (a+va2 - I )2n'

These types of rational approximations to (a - X)112 converge at least as fast
as (a + .jaz - 1) 2n while polynomial approximations only behave like
(a +.jaz - 1) n. See [3 p. 437] for a more general discussion of the
derivation of Pade approximations to X1/2 and related functions,
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